Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
1.
Protein Sci ; 33(5): e4989, 2024 May.
Article in English | MEDLINE | ID: mdl-38659213

ABSTRACT

Intrinsically disordered late embryogenesis abundant (LEA) proteins play a central role in the tolerance of plants and other organisms to dehydration brought upon, for example, by freezing temperatures, high salt concentration, drought or desiccation, and many LEA proteins have been found to stabilize dehydration-sensitive cellular structures. Their conformational ensembles are highly sensitive to the environment, allowing them to undergo conformational changes and adopt ordered secondary and quaternary structures and to participate in formation of membraneless organelles. In an interdisciplinary approach, we discovered how the functional diversity of the Arabidopsis thaliana LEA protein COR15A found in vitro is encoded in its structural repertoire, with the stabilization of membranes being achieved at the level of secondary structure and the stabilization of enzymes accomplished by the formation of oligomeric complexes. We provide molecular details on intra- and inter-monomeric helix-helix interactions, demonstrate how oligomerization is driven by an α-helical molecular recognition feature (α-MoRF) and provide a rationale that the formation of noncanonical, loosely packed, right-handed coiled-coils might be a recurring theme for homo- and hetero-oligomerization of LEA proteins.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Intrinsically Disordered Proteins , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/chemistry , Arabidopsis/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/genetics , Freezing , Models, Molecular , Protein Multimerization , Protein Structure, Secondary
2.
J Evol Biol ; 37(5): 566-576, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38623610

ABSTRACT

Temporal changes in environmental conditions may play a major role in the year-to-year variation in fitness consequences of behaviours. Identifying environmental drivers of such variation is crucial to understand the evolutionary trajectories of behaviours in natural contexts. However, our understanding of how environmental variation influences behaviours in the wild remains limited. Using data collected over 14 breeding seasons from a collared flycatcher (Ficedula albicollis) population, we examined the effect of environmental variation on the relationship between survival and risk-taking behaviour, a highly variable behavioural trait with great evolutionary and ecological significance. Specifically, using annual recapture probability as a proxy of survival, we evaluated the specific effect of predation pressure, food availability, and mean temperature on the relationship between annual recapture probability and risk-taking behaviour (measured as flight initiation distance [FID]). We found a negative trend, as the relationship between annual recapture probability and FID decreased over the study years and changed from positive to negative. Specifically, in the early years of the study, risk-avoiding individuals exhibited a higher annual recapture probability, whereas in the later years, risk-avoiders had a lower annual recapture probability. However, we did not find evidence that any of the considered environmental factors mediated the variation in the relationship between survival and risk-taking behaviour.


Subject(s)
Animal Migration , Songbirds , Animals , Songbirds/physiology , Environment , Risk-Taking , Male , Female , Seasons
3.
Nat Commun ; 15(1): 3413, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649740

ABSTRACT

The functions of biomolecular condensates are thought to be influenced by their material properties, and these will be determined by the internal organization of molecules within condensates. However, structural characterizations of condensates are challenging, and rarely reported. Here, we deploy a combination of small angle neutron scattering, fluorescence recovery after photobleaching, and coarse-grained molecular dynamics simulations to provide structural descriptions of model condensates that are formed by macromolecules from nucleolar granular components (GCs). We show that these minimal facsimiles of GCs form condensates that are network fluids featuring spatial inhomogeneities across different length scales that reflect the contributions of distinct protein and peptide domains. The network-like inhomogeneous organization is characterized by a coexistence of liquid- and gas-like macromolecular densities that engenders bimodality of internal molecular dynamics. These insights suggest that condensates formed by multivalent proteins share features with network fluids formed by systems such as patchy or hairy colloids.


Subject(s)
Biomolecular Condensates , Molecular Dynamics Simulation , Scattering, Small Angle , Biomolecular Condensates/chemistry , Fluorescence Recovery After Photobleaching , Neutron Diffraction , Macromolecular Substances/chemistry , Proteins/chemistry
4.
J Phys Chem Lett ; 15(17): 4745-4752, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38661394

ABSTRACT

Ergosterol, found in fungi and some protist membranes, is understudied compared with cholesterol from animal membranes. Generally, ergosterol is assumed to modulate membranes in the same manner as cholesterol, based on their similar chemical structures. Here we reveal some fundamental structural and dynamical differences between them. Neutron diffraction shows that ergosterol is embedded in the lipid bilayer much shallower than cholesterol. Ergosterol does not change the membrane thickness as much as cholesterol does, indicating little condensation effect. Neutron spin echo shows that ergosterol can rigidify and soften membranes at different concentrations. The lateral lipid diffusion measured by quasielastic neutron scattering indicates that ergosterol promotes a jump diffusion of the lipid, whereas cholesterol keeps the same continuous lateral diffusion as the pure lipid membrane. Our results point to quite distinct interactions of ergosterol with membranes compared with cholesterol. These insights provide a basic understanding of membranes containing ergosterol with implications for phenomena such as lipid rafts and drug interactions.


Subject(s)
Cholesterol , Ergosterol , Lipid Bilayers , Ergosterol/chemistry , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Cholesterol/chemistry , Neutron Diffraction , Diffusion
5.
Nat Commun ; 15(1): 2723, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548715

ABSTRACT

Integration of extracellular signals by neurons is pivotal for brain development, plasticity, and repair. Axon guidance relies on receptor-ligand interactions crosstalking with extracellular matrix components. Semaphorin-5A (Sema5A) is a bifunctional guidance cue exerting attractive and inhibitory effects on neuronal growth through the interaction with heparan sulfate (HS) and chondroitin sulfate (CS) glycosaminoglycans (GAGs), respectively. Sema5A harbors seven thrombospondin type-1 repeats (TSR1-7) important for GAG binding, however the underlying molecular basis and functions in vivo remain enigmatic. Here we dissect the structural basis for Sema5A:GAG specificity and demonstrate the functional significance of this interaction in vivo. Using x-ray crystallography, we reveal a dimeric fold variation for TSR4 that accommodates GAG interactions. TSR4 co-crystal structures identify binding residues validated by site-directed mutagenesis. In vitro and cell-based assays uncover specific GAG epitopes necessary for TSR association. We demonstrate that HS-GAG binding is preferred over CS-GAG and mediates Sema5A oligomerization. In vivo, Sema5A:GAG interactions are necessary for Sema5A function and regulate Plexin-A2 dependent dentate progenitor cell migration. Our study rationalizes Sema5A associated developmental and neurological disorders and provides mechanistic insights into how multifaceted guidance functions of a single transmembrane cue are regulated by proteoglycans.


Subject(s)
Glycosaminoglycans , Semaphorins , Glycosaminoglycans/metabolism , Proteoglycans/metabolism , Heparitin Sulfate/metabolism , Cell Movement , Semaphorins/genetics , Semaphorins/metabolism
6.
Sci Total Environ ; 926: 171945, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38531456

ABSTRACT

Global climate change involves various aspects of climate, including precipitation changes and declining surface wind speeds, but studies investigating biological responses have often focused on the impacts of rising temperatures. Additionally, related long-term studies on bird reproduction tend to concentrate on breeding onset, even though other aspects of breeding could also be sensitive to the diverse weather aspects. This study aimed to explore how multiple aspects of breeding (breeding onset, hatching delay, breeding season length, clutch size, fledgling number) were associated with different weather components. We used an almost four-decade-long dataset to investigate the various aspects of breeding parameters of a collared flycatcher (Ficedula albicollis) population in the Carpathian Basin. Analyses revealed some considerable associations, for example, breeding seasons lengthened with the amount of daily precipitation, and clutch size increased with the number of cool days. Parallel and opposing changes in the correlated pairs of breeding and weather parameters were also observed. The phenological mismatch between prey availability and breeding time slightly increased, and fledgling number strongly decreased with increasing mistiming. Our results highlighted the intricate interplay between climate change and the reproductive patterns of migratory birds, emphasizing the need for a holistic approach. The results also underscored the potential threats posed by climate change to bird populations and the importance of adaptive responses to changing environmental conditions.


Subject(s)
Passeriformes , Songbirds , Animals , Songbirds/physiology , Passeriformes/physiology , Weather , Seasons , Climate Change , Reproduction , Animal Migration/physiology
7.
Nucleic Acids Res ; 52(8): 4234-4256, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38348998

ABSTRACT

Mammalian promoters consist of multifarious elements, which make them unique and support the selection of the proper transcript variants required under diverse conditions in distinct cell types. However, their direct DNA-transcription factor (TF) interactions are mostly unidentified. Murine bone marrow-derived macrophages (BMDMs) are a widely used model for studying gene expression regulation. Thus, this model serves as a rich source of various next-generation sequencing data sets, including a large number of TF cistromes. By processing and integrating the available cistromic, epigenomic and transcriptomic data from BMDMs, we characterized the macrophage-specific direct DNA-TF interactions, with a particular emphasis on those specific for promoters. Whilst active promoters are enriched for certain types of typically methylatable elements, more than half of them contain non-methylatable and prototypically promoter-distal elements. In addition, circa 14% of promoters-including that of Csf1r-are composed exclusively of 'distal' elements that provide cell type-specific gene regulation by specialized TFs. Similar to CG-rich promoters, these also contain methylatable CG sites that are demethylated in a significant portion and show high polymerase activity. We conclude that this unusual class of promoters regulates cell type-specific gene expression in macrophages, and such a mechanism might exist in other cell types too.


Subject(s)
DNA Methylation , Gene Expression Regulation , Macrophages , Promoter Regions, Genetic , Transcription Factors , Macrophages/metabolism , Animals , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Lineage/genetics
8.
Ecol Evol ; 14(2): e10981, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38352200

ABSTRACT

Assessing additive genetic variance is a crucial step in predicting the evolutionary response of a target trait. However, the estimated genetic variance may be sensitive to the methodology used, e.g., the way relatedness is assessed among the individuals, especially in wild populations where social pedigrees can be inaccurate. To investigate this possibility, we investigated the additive genetic variance in tarsus length, a major proxy of skeletal body size in birds. The model species was the collared flycatcher (Ficedula albicollis), a socially monogamous but genetically polygamous migratory passerine. We used two relatedness matrices to estimate the genetic variance: (1) based solely on social links and (2) a genetic similarity matrix based on a large array of single-nucleotide polymorphisms (SNPs). Depending on the relatedness matrix considered, we found moderate to high additive genetic variance and heritability estimates for tarsus length. In particular, the heritability estimates were higher when obtained with the genetic similarity matrix instead of the social pedigree. Our results confirm the potential for this crucial trait to respond to selection and highlight methodological concerns when calculating additive genetic variance and heritability in phenotypic traits. We conclude that using a social pedigree instead of a genetic similarity matrix to estimate relatedness among individuals in a genetically polygamous wild population may significantly deflate the estimates of additive genetic variation.

9.
bioRxiv ; 2024 Feb 11.
Article in English | MEDLINE | ID: mdl-37873180

ABSTRACT

The functions of biomolecular condensates are thought to be influenced by their material properties, and these will be determined by the internal organization of molecules within condensates. However, structural characterizations of condensates are challenging, and rarely reported. Here, we deploy a combination of small angle neutron scattering, fluorescence recovery after photobleaching, and coarse-grained molecular dynamics simulations to provide structural descriptions of model condensates that are formed by macromolecules from nucleolar granular components (GCs). We show that these minimal facsimiles of GCs form condensates that are network fluids featuring spatial inhomogeneities across different length scales that reflect the contributions of distinct protein and peptide domains. The network-like inhomogeneous organization is characterized by a coexistence of liquid- and gas-like macromolecular densities that engenders bimodality of internal molecular dynamics. These insights suggest that condensates formed by multivalent proteins share features with network fluids formed by systems such as patchy or hairy colloids.

10.
Acta Ophthalmol ; 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38126128

ABSTRACT

PURPOSE: To compare detection rates of microaneurysms (MAs) on high-speed megahertz optical coherence tomography angiography (MHz-OCTA), fluorescein angiography (FA) and colour fundus photography (CF) in patients with diabetic retinopathy (DR). METHODS: For this exploratory cross-sectional study, MHz-OCTA data were acquired with a swept-source OCT prototype (A-scan rate: 1.7 MHz), and FA and CF imaging was performed using Optos® California. MA count was manually evaluated on en face MHz-OCTA/FA/CF images within an extended ETDRS grid. Detectability of MAs visible on FA images was evaluated on corresponding MHz-OCTA and CF images. MA distribution and leakage were correlated with detectability on OCTA and CF imaging. RESULTS: 47 eyes with severe DR (n = 12) and proliferative DR (n = 35) were included. MHz-OCTA and CF imaging detected on average 56% and 36% of MAs, respectively. MHz-OCTA detection rate was significantly higher than CF (p < 0.01). The combination of MHz-OCTA and CF leads to an increased detection rate of 70%. There was no statistically significant association between leakage and MA detectability on OCTA (p = 0.13). For CF, the odds of detecting leaking MAs were significantly lower than non-leaking MAs (p = 0.012). Using MHz-OCTA, detection of MAs outside the ETDRS grid was less likely than MAs located within the ETDRS grid (outer ring, p < 0.01; inner ring, p = 0.028). No statistically significant difference between rings was observed for CF measurements. CONCLUSIONS: More MAs were detected on MHz-OCTA than on CF imaging. Detection rate was lower for MAs located outside the macular region with MHz-OCTA and for leaking MAs with CF imaging. Combining both non-invasive modalities can improve MA detection.

11.
Res Sq ; 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37886520

ABSTRACT

The functions of biomolecular condensates are thought to be influenced by their material properties, and these are in turn determined by the multiscale structural features within condensates. However, structural characterizations of condensates are challenging, and hence rarely reported. Here, we deploy a combination of small angle neutron scattering, fluorescence recovery after photobleaching, and bespoke coarse-grained molecular dynamics simulations to provide structural descriptions of model condensates that mimic nucleolar granular components (GCs). We show that facsimiles of GCs are network fluids featuring spatial inhomogeneities across hierarchies of length scales that reflect the contributions of distinct protein and peptide domains. The network-like inhomogeneous organization is characterized by a coexistence of liquid- and gas-like macromolecular densities that engenders bimodality of internal molecular dynamics. These insights, extracted from a combination of approaches, suggest that condensates formed by multivalent proteins share features with network fluids formed by associative systems such as patchy or hairy colloids.

12.
Sci Rep ; 13(1): 16395, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37773348

ABSTRACT

Long-read sequencing (LRS) techniques enable the identification of full-length RNA molecules in a single run eliminating the need for additional assembly steps. LRS research has exposed unanticipated transcriptomic complexity in various organisms, including viruses. Herpesviruses are known to produce a range of transcripts, either close to or overlapping replication origins (Oris) and neighboring genes related to transcription or replication, which possess confirmed or potential regulatory roles. In our research, we employed both new and previously published LRS and short-read sequencing datasets to uncover additional Ori-proximal transcripts in nine herpesviruses from all three subfamilies (alpha, beta and gamma). We discovered novel long non-coding RNAs, as well as splice and length isoforms of mRNAs. Moreover, our analysis uncovered an intricate network of transcriptional overlaps within the examined genomic regions. We demonstrated that herpesviruses display distinct patterns of transcriptional overlaps in the vicinity of or at the Oris. Our findings suggest the existence of a 'super regulatory center' in the genome of alphaherpesviruses that governs the initiation of both DNA replication and global transcription through multilayered interactions among the molecular machineries.


Subject(s)
Herpesviridae , Replication Origin , Replication Origin/genetics , Herpesviridae/genetics , Transcriptome , Gene Expression Profiling , Genomics
13.
J Struct Biol ; 215(4): 108028, 2023 12.
Article in English | MEDLINE | ID: mdl-37704014

ABSTRACT

NADPH-dependent assimilatory sulfite reductase (SiR) from Escherichia coli performs a six-electron reduction of sulfite to the bioavailable sulfide. SiR is composed of a flavoprotein (SiRFP) reductase subunit and a hemoprotein (SiRHP) oxidase subunit. There is no known high-resolution structure of SiR or SiRFP, thus we do not yet fully understand how the subunits interact to perform their chemistry. Here, we used small-angle neutron scattering to understand the impact of conformationally restricting the highly mobile SiRFP octamer into an electron accepting (closed) or electron donating (open) conformation, showing that SiR remains active, flexible, and asymmetric even with these conformational restrictions. From these scattering data, we model the first solution structure of SiRFP. Further, computational modeling of the N-terminal 52 amino acids that are responsible for SiRFP oligomerization suggests an eight-helical bundle tethers together the SiRFP subunits to form the SiR core. Finally, mass spectrometry analysis of the closed SiRFP variant show that SiRFP is capable of inter-molecular domain crossover, in which the electron donating domain from one polypeptide is able to interact directly with the electron accepting domain of another polypeptide. This structural characterization suggests that SiR performs its high-volume electron transfer through both inter- and intramolecular pathways between SiRFP domains and, thus, cis or trans transfer from reductase to oxidase subunits. Such highly redundant potential for electron transfer makes this system a potential target for designing synthetic enzymes.


Subject(s)
Escherichia coli , Oxidoreductases , Sulfite Reductase (NADPH)/chemistry , NADP/metabolism , Escherichia coli/metabolism , Peptides
15.
Front Immunol ; 14: 1168635, 2023.
Article in English | MEDLINE | ID: mdl-37215144

ABSTRACT

Introduction: Macrophages significantly contribute to the regulation of vessel formation under physiological and pathological conditions. Although the angiogenesis-regulating role of alternatively polarized macrophages is quite controversial, a growing number of evidence shows that they can participate in the later phases of angiogenesis, including vessel sprouting and remodeling or regression. However, the epigenetic and transcriptional regulatory mechanisms controlling this angiogenesis-modulating program are not fully understood. Results: Here we show that IL-4 can coordinately regulate the VEGFA-VEGFR1 (FLT1) axis via simultaneously inhibiting the proangiogenic Vegfa and inducing the antiangiogenic Flt1 expression in murine bone marrow-derived macrophages, which leads to the attenuated proangiogenic activity of alternatively polarized macrophages. The IL-4-activated STAT6 and IL-4-STAT6 signaling pathway-induced EGR2 transcription factors play a direct role in the transcriptional regulation of the Vegfa-Flt1 axis. We demonstrated that this phenomenon is not restricted to the murine bone marrow-derived macrophages, but can also be observed in different murine tissue-resident macrophages ex vivo and parasites-elicited macrophages in vivo with minor cell type-specific differences. Furthermore, IL-4 exposure can modulate the hypoxic response of genes in both murine and human macrophages leading to a blunted Vegfa/VEGFA and synergistically induced Flt1/FLT1 expression. Discussion: Our findings establish that the IL-4-activated epigenetic and transcriptional program can determine angiogenesis-regulating properties in alternatively polarized macrophages under normoxic and hypoxic conditions.


Subject(s)
Interleukin-4 , Vascular Endothelial Growth Factor A , Humans , Mice , Animals , Interleukin-4/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Macrophages/metabolism , Signal Transduction , Gene Expression Regulation , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-1/metabolism
16.
Materials (Basel) ; 16(9)2023 May 07.
Article in English | MEDLINE | ID: mdl-37176465

ABSTRACT

Photonic nanoarchitectures of butterfly wings can serve as biotemplates to prepare semiconductor thin films of ZnO by atomic layer deposition. The resulting biotemplated ZnO nanoarchitecture preserves the structural and optical properties of the natural system, while it will also have the features of the functional material. The ZnO-coated wings can be used directly in heterogeneous photocatalysis to decompose pollutants dissolved in water upon visible light illumination. We used the photonic nanoarchitectures of different Morpho butterflies with different structural colors as biotemplates and examined the dependence of decomposition rates of methyl orange and rhodamine B dyes on the structural color of the biotemplates and the thickness of the ZnO coating. Using methyl orange, we measured a ten-fold increase in photodegradation rate when the 20 nm ZnO-coated wings were compared to similarly coated glass substrates. Using rhodamine B, a saturating relationship was found between the degradation rate and the thickness of the deposited ZnO on butterfly wings. We concluded that the enhancement of the catalytic efficiency can be attributed to the slow light effect due to a spectral overlap between the ZnO-coated Morpho butterfly wings reflectance with the absorption band of dyes, thus the photocatalytic performance could be changed by the tuning of the structural color of the butterfly biotemplates. The photodegradation mechanism of the dyes was investigated by liquid chromatography-mass spectroscopy.

17.
Evolution ; 77(7): 1591-1606, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37071597

ABSTRACT

Domestication is a well-known example of the relaxation of environmentally based cognitive selection that leads to reductions in brain size. However, little is known about how brain size evolves after domestication and whether subsequent directional/artificial selection can compensate for domestication effects. The first animal to be domesticated was the dog, and recent directional breeding generated the extensive phenotypic variation among breeds we observe today. Here we use a novel endocranial dataset based on high-resolution CT scans to estimate brain size in 159 dog breeds and analyze how relative brain size varies across breeds in relation to functional selection, longevity, and litter size. In our analyses, we controlled for potential confounding factors such as common descent, gene flow, body size, and skull shape. We found that dogs have consistently smaller relative brain size than wolves supporting the domestication effect, but breeds that are more distantly related to wolves have relatively larger brains than breeds that are more closely related to wolves. Neither functional category, skull shape, longevity, nor litter size was associated with relative brain size, which implies that selection for performing specific tasks, morphology, and life history does not necessarily influence brain size evolution in domesticated species.


Subject(s)
Wolves , Pregnancy , Female , Dogs , Animals , Wolves/genetics , Litter Size , Longevity , Organ Size , Domestication
18.
Langmuir ; 39(16): 5917-5928, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37053432

ABSTRACT

The adsorption of nonionic surfactants onto hydrophilic nanoparticles (NPs) is anticipated to increase their stability in aqueous medium. While nonionic surfactants show salinity- and temperature-dependent bulk phase behavior in water, the effects of these two solvent parameters on surfactant adsorption and self-assembly onto NPs are poorly understood. In this study, we combine adsorption isotherms, dispersion transmittance, and small-angle neutron scattering (SANS) to investigate the effects of salinity and temperature on the adsorption of pentaethylene glycol monododecyl ether (C12E5) surfactant on silica NPs. We find an increase in the amount of surfactant adsorbed onto the NPs with increasing temperature and salinity. Based on SANS measurements and corresponding analysis using computational reverse-engineering analysis of scattering experiments (CREASE), we show that the increase in salinity and temperature results in the aggregation of silica NPs. We further demonstrate the non-monotonic changes in viscosity for the C12E5-silica NP mixture with increasing temperature and salinity and correlate the observations to the aggregated state of NPs. The study provides a fundamental understanding of the configuration and phase transition of the surfactant-coated NPs and presents a strategy to manipulate the viscosity of such dispersion using temperature as a stimulus.

19.
Nanomaterials (Basel) ; 12(24)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36558345

ABSTRACT

Solar radiation is a cheap and abundant energy for water remediation, hydrogen generation by water splitting, and CO2 reduction. Supported photocatalysts have to be tuned to the pollutants to be eliminated. Spectral engineering may be a handy tool to increase the efficiency or the selectivity of these. Photonic nanoarchitectures of biological origin with hierarchical organization from nanometers to centimeters are candidates for such applications. We used the blue wing surface of laboratory-reared male Polyommatus icarus butterflies in combination with atomic layer deposition (ALD) of conformal ZnO coating and octahedral Cu2O nanoparticles (NP) to explore the possibilities of engineering the optical and catalytic properties of hybrid photonic nanoarchitectures. The samples were characterized by UV-Vis spectroscopy and optical and scanning electron microscopy. Their photocatalytic performance was benchmarked by comparing the initial decomposition rates of rhodamine B. Cu2O NPs alone or on the butterfly wings, covered by a 5 nm thick layer of ZnO, showed poor performance. Butterfly wings, or ZnO coated butterfly wings with 15 nm ALD layer showed a 3 to 3.5 times enhancement as compared to bare glass. The best performance of almost 4.3 times increase was obtained for the wings conformally coated with 15 nm ZnO, deposited with Cu2O NPs, followed by conformal coating with an additional 5 nm of ZnO by ALD. This enhanced efficiency is associated with slow light effects on the red edge of the reflectance maximum of the photonic nanoarchitectures and with enhanced carrier separation through the n-type ZnO and the p-type Cu2O heterojunction. Properly chosen biologic photonic nanoarchitectures in combination with carefully selected photocatalyst(s) can significantly increase the photodegradation of pollutants in water under visible light illumination.

20.
J Immunol ; 209(10): 1930-1941, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36426944

ABSTRACT

The antiviral state, an initial line of defense against viral infection, is established by a set of IFN-stimulated genes (ISGs) encoding antiviral effector proteins. The effector ISGs are transcriptionally regulated by type I IFNs mainly via activation of IFN-stimulated gene factor 3 (ISGF3). In this study, the regulatory elements of effector ISGs were characterized to determine the (epi)genetic features that enable their robust induction by type I IFNs in multiple cell types. We determined the location of regulatory elements, the DNA motifs, the occupancy of ISGF3 subunits (IRF9, STAT1, and STAT2) and other transcription factors, and the chromatin accessibility of 37 effector ISGs in murine dendritic cells. The IFN-stimulated response element (ISRE) and its tripartite version occurred most frequently in the regulatory elements of effector ISGs than in any other tested ISG subsets. Chromatin accessibility at their promoter regions was similar to most other ISGs but higher than at the promoters of inflammation-related cytokines, which were used as a reference gene set. Most effector ISGs (81.1%) had at least one ISGF3 binding region proximal to the transcription start site (TSS), and only a subset of effector ISGs (24.3%) was associated with three or more ISGF3 binding regions. The IRF9 signals were typically higher, and ISRE motifs were "stronger" (more similar to the canonical sequence) in TSS-proximal versus TSS-distal regulatory regions. Moreover, most TSS-proximal regulatory regions were accessible before stimulation in multiple cell types. Our results indicate that "strong" ISRE motifs and universally accessible promoter regions that permit robust, widespread induction are characteristic features of effector ISGs.


Subject(s)
Antiviral Restriction Factors , Chromatin , Animals , Mice , Chromatin/genetics , Nucleotide Motifs , Promoter Regions, Genetic/genetics , Response Elements/genetics , Interferons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...